Balanced motor primitive can explain generalization of motor learning effects between unimanual and bimanual movements
نویسندگان
چکیده
Motor learning in unimanual and bimanual planar reaching movements has been intensively investigated. Although distinct theoretical frameworks have been proposed for each of these reaching movements, the relationship between these movements remains unclear. In particular, the generalization of motor learning effects (transfer of learning effects) between unimanual and bimanual movements has yet to be successfully explained. Here, by extending a motor primitive framework, we analytically proved that the motor primitive framework can reproduce the generalization of learning effects between unimanual and bimanual movements if the mean activity of each primitive for unimanual movements is balanced to the mean for bimanual movements. In this balanced condition, the activity of each primitive is consistent with previously reported neuronal activity. The unimanual-bimanual balance leads to the testable prediction that generalization between unimanual and bimanual movements is more widespread to different reaching directions than generalization within respective movements. Furthermore, the balanced motor primitive can reproduce another previously reported phenomenon: the learning of different force fields for unimanual and bimanual movements.
منابع مشابه
Single-unit activity related to bimanual arm movements in the primary and supplementary motor cortices.
Single units were recorded from the primary motor (MI) and supplementary motor (SMA) areas of Rhesus monkeys performing one-arm (unimanual) and two-arm (bimanual) proximal reaching tasks. During execution of the bimanual movements, the task related activity of about one-half the neurons in each area (MI: 129/232, SMA: 107/206) differed from the activity during similar displacements of one arm w...
متن کاملImproving a Bimanual Motor Skill Through Unimanual Training
When we learn a bimanual motor skill (e.g., rowing a boat), we often break it down into unimanual practices (e.g., a rowing drill with the left or right arm). Such unimanual practice is thought to be useful for learning bimanual motor skills efficiently because the learner can concentrate on learning to perform a simpler component. However, it is not so straightforward to assume that unimanual ...
متن کاملNeuronal populations in primary motor cortex encode bimanual arm movements.
Previous studies have shown that activity of neuronal populations in the primary motor cortex (MI), processed by the population vector method, faithfully predicts upcoming movements. In our previous studies we found that single neurons responded differently during movements of one arm vs. combined movements of the two arms. It was, therefore, not clear whether the population vector approach cou...
متن کاملTransfer of ballistic motor skill between bilateral and unilateral contexts in young and older adults: neural adaptations and behavioral implications.
Bilateral movement rehabilitation is gaining popularity as an approach to improve the recovery not only of bimanual function but also of unilateral motor tasks. While the neural mechanisms mediating the transfer of bilateral training gains into unimanual contexts are not fully understood, converging evidence from behavioral, neurophysiological, and imaging studies suggests that bimanual movemen...
متن کاملCortical representation of bimanual movements.
It is well established that the discharge of neurons in primate motor cortex is tuned to the movement direction of the contralateral arm. Interestingly, it has been found that these neurons exhibit a directional tuning to the ipsilateral arm as well and that the preferred directions to both arms tend to be similar. A recent study showed that motor cortex cells are also directionally selective t...
متن کامل